Dsymv.java

package org.mklab.sdpj.gpack.blaswrap;

import org.mklab.nfc.matrix.ComplexNumericalMatrix;
import org.mklab.nfc.matrix.RealNumericalMatrix;
import org.mklab.nfc.scalar.ComplexNumericalScalar;
import org.mklab.nfc.scalar.RealNumericalScalar;


/**
 * @author koga
 * @version $Revision$, 2009/04/24
 * @param <RS> 実スカラーの型
 * @param <RM> 実行列の型
 * @param <CS> 複素スカラーの型
 * @param <CM> 複素行列の型
 */
public class Dsymv<RS extends RealNumericalScalar<RS, RM, CS, CM>, RM extends RealNumericalMatrix<RS, RM, CS, CM>, CS extends ComplexNumericalScalar<RS, RM, CS, CM>, CM extends ComplexNumericalMatrix<RS, RM, CS, CM>> {

  /*  Purpose   
  =======   
  DSYMV  performs the matrix-vector  operation   
     y := alpha*A*x + beta*y,   
  where alpha and beta are scalars, x and y are n element vectors and   
  A is an n by n symmetric matrix.   
  Parameters   
  ==========   
  UPLO   - CHARACTER*1.   
           On entry, UPLO specifies whether the upper or lower   
           triangular part of the array A is to be referenced as   
           follows:   
              UPLO = 'U' or 'u'   Only the upper triangular part of A   
                                  is to be referenced.   
              UPLO = 'L' or 'l'   Only the lower triangular part of A   
                                  is to be referenced.   
           Unchanged on exit.   
  N      - INTEGER.   
           On entry, N specifies the order of the matrix A.   
           N must be at least zero.   
           Unchanged on exit.   
  ALPHA  - DOUBLE PRECISION.   
           On entry, ALPHA specifies the scalar alpha.   
           Unchanged on exit.   
  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).   
           Before entry with  UPLO = 'U' or 'u', the leading n by n   
           upper triangular part of the array A must contain the upper   
           triangular part of the symmetric matrix and the strictly   
           lower triangular part of A is not referenced.   
           Before entry with UPLO = 'L' or 'l', the leading n by n   
           lower triangular part of the array A must contain the lower   
           triangular part of the symmetric matrix and the strictly   
           upper triangular part of A is not referenced.   
           Unchanged on exit.   
  LDA    - INTEGER.   
           On entry, LDA specifies the first dimension of A as declared   
           in the calling (sub) program. LDA must be at least   
           max( 1, n ).   
           Unchanged on exit.   
  X      - DOUBLE PRECISION array of dimension at least   
           ( 1 + ( n - 1 )*abs( INCX ) ).   
           Before entry, the incremented array X must contain the n   
           element vector x.   
           Unchanged on exit.   
  INCX   - INTEGER.   
           On entry, INCX specifies the increment for the elements of   
           X. INCX must not be zero.   
           Unchanged on exit.   
  BETA   - DOUBLE PRECISION.   
           On entry, BETA specifies the scalar beta. When BETA is   
           supplied as zero then Y need not be set on input.   
           Unchanged on exit.   
  Y      - DOUBLE PRECISION array of dimension at least   
           ( 1 + ( n - 1 )*abs( INCY ) ).   
           Before entry, the incremented array Y must contain the n   
           element vector y. On exit, Y is overwritten by the updated   
           vector y.   
  INCY   - INTEGER.   
           On entry, INCY specifies the increment for the elements of   
           Y. INCY must not be zero.   
           Unchanged on exit.   
  Level 2 Blas routine.   
  -- Written on 22-October-1986.   
     Jack Dongarra, Argonne National Lab.   
     Jeremy Du Croz, Nag Central Office.   
     Sven Hammarling, Nag Central Office.   
     Richard Hanson, Sandia National Labs.   
     Test the input parameters.   
     Parameter adjustments */

  /**
   * @param uplo uplo
   * @param n n
   * @param alpha alpha
   * @param a a
   * @param lda lda
   * @param x x
   * @param incx incx
   * @param beta beta
   * @param y y
   * @param incy incy
   * @return result
   */
  int execute(String uplo, int n, RS alpha, RS[] a, int lda, RS[] x, int incx, RS beta, RS[] y, int incy) {
    final RS unit = a[0].createUnit();

    int a_dim1 = lda;
    int a_offset = 1 + a_dim1 * 1;
    int pointer_a = -a_offset;

    int info = 0;
    if (!BLAS.lsame(uplo, "U") && !BLAS.lsame(uplo, "L")) { //$NON-NLS-1$ //$NON-NLS-2$
      info = 1;
    } else if (n < 0) {
      info = 2;
    } else if (lda < Math.max(1, n)) {
      info = 5;
    } else if (incx == 0) {
      info = 7;
    } else if (incy == 0) {
      info = 10;
    }
    if (info != 0) {
      BLAS.xerbla("DSYMV ", info); //$NON-NLS-1$
      return 0;
    }
    // Quick return if possible.
    if (n == 0 || alpha.isZero() && beta.equals(unit.createUnit())) {
      return 0;
    }
    // Set up the start points in  X  and  Y.
    int kx;
    if (incx > 0) {
      kx = 1;
    } else {
      kx = 1 - (n - 1) * incx;
    }
    int ky;
    if (incy > 0) {
      ky = 1;
    } else {
      ky = 1 - (n - 1) * incy;
    }
    /* Start the operations. In this version the elements of A are   
     * accessed sequentially with one pass through the triangular part of A.   
     * First form  y := beta*y.
     */
    if (!beta.equals(unit.createUnit())) {
      if (incy == 1) {
        if (beta.isZero()) {
          for (int i = 1; i <= n; ++i) {
            y[i - 1] = unit.createZero();
          }
        } else {
          for (int i = 1; i <= n; ++i) {
            y[i - 1] = beta.multiply(y[i - 1]);
          }
        }
      } else {
        int iy = ky;
        if (beta.isZero()) {
          for (int i = 1; i <= n; ++i) {
            y[iy - 1] = unit.createZero();
            iy += incy;
          }
        } else {
          for (int i = 1; i <= n; ++i) {
            y[iy - 1] = beta.multiply(y[iy - 1]);
            iy += incy;
          }
        }
      }
    }
    if (alpha.isZero()) {
      return 0;
    }
    if (BLAS.lsame(uplo, "U")) { //$NON-NLS-1$
      // Form  y  when A is stored in upper triangle.
      if (incx == 1 && incy == 1) {
        for (int j = 1; j <= n; ++j) {
          RS temp1 = alpha.multiply(x[j - 1]);
          RS temp2 = unit.createZero();
          for (int i = 1; i <= j - 1; ++i) {
            int p = j * a_dim1 + i + pointer_a;
            y[i - 1] = y[i - 1].add(temp1.multiply(a[p]));
            temp2 = temp2.add(a[p].multiply(x[i - 1]));
          }
          y[j - 1] = y[j - 1].add(temp1.multiply(a[j * a_dim1 + j + pointer_a])).add(alpha.multiply(temp2));
        }
      } else {
        int jx = kx;
        int jy = ky;
        for (int j = 1; j <= n; ++j) {
          RS temp1 = alpha.multiply(x[-1 + jx]);
          RS temp2 = unit.createZero();
          int ix = kx;
          int iy = ky;
          for (int i = 1; i <= j - 1; ++i) {
            int p = j * a_dim1 + i + pointer_a;
            y[iy - 1] = y[iy - 1].add(temp1.multiply(a[p]));
            temp2 = temp2.add(a[p].multiply(x[-1 + ix]));
            ix += incx;
            iy += incy;
          }
          y[jy - 1] = y[jy - 1].add(temp1.multiply(a[j * a_dim1 + j + pointer_a])).add(alpha.multiply(temp2));
          jx += incx;
          jy += incy;
        }
      }
    } else {
      // Form  y  when A is stored in lower triangle.
      if (incx == 1 && incy == 1) {
        for (int j = 1; j <= n; ++j) {
          RS temp1 = alpha.multiply(x[j - 1]);
          RS temp2 = unit.createZero();
          y[j - 1] = y[j - 1].add(temp1.multiply(a[j * a_dim1 + j + pointer_a]));
          for (int i = j + 1; i <= n; ++i) {
            int p = j * a_dim1 + i + pointer_a;
            y[i - 1] = y[i - 1].add(temp1.multiply(a[p]));
            temp2 = temp2.add(a[p].multiply(x[i - 1]));
          }
          y[j - 1] = y[j - 1].add(alpha.multiply(temp2));
        }
      } else {
        int jx = kx;
        int jy = ky;
        for (int j = 1; j <= n; ++j) {
          RS temp1 = alpha.multiply(x[-1 + jx]);
          RS temp2 = unit.createZero();
          y[jy - 1] = y[jy - 1].add(temp1.multiply(a[j * a_dim1 + j + pointer_a]));
          int ix = jx;
          int iy = jy;
          for (int i = j + 1; i <= n; ++i) {
            ix += incx;
            iy += incy;
            int p = j * a_dim1 + i + pointer_a;
            y[iy - 1] = y[iy - 1].add(temp1.multiply(a[p]));
            temp2 = temp2.add(a[p].multiply(x[-1 + ix]));
          }
          y[jy - 1] = y[jy - 1].add(alpha.multiply(temp2));
          jx += incx;
          jy += incy;
        }
      }
    }
    return 0;
  }
}