Dlansy.java

package org.mklab.sdpj.gpack.lapackwrap;

import org.mklab.nfc.matrix.ComplexNumericalMatrix;
import org.mklab.nfc.matrix.RealNumericalMatrix;
import org.mklab.nfc.scalar.ComplexNumericalScalar;
import org.mklab.nfc.scalar.RealNumericalScalar;
import org.mklab.sdpj.gpack.blaswrap.BLAS;


/**
 * @author koga
 * @version $Revision$, 2009/04/25
 * @param <RS> type of real scalar
 * @param <RM> type of real matrix
 * @param <CS> type of complex scalar
 * @param <CM> type of complex Matrix
 */
public class Dlansy<RS extends RealNumericalScalar<RS, RM, CS, CM>, RM extends RealNumericalMatrix<RS, RM, CS, CM>, CS extends ComplexNumericalScalar<RS, RM, CS, CM>, CM extends ComplexNumericalMatrix<RS, RM, CS, CM>>  {

  /** */
  private RS[] a;
  /** */
  private RS scale;
  /** */
  private RS sum;

  /*  -- LAPACK auxiliary routine (version 3.0) --   
  Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
  Courant Institute, Argonne National Lab, and Rice University   
  October 31, 1992   


  Purpose   
  =======   

  DLANSY  returns the value of the one norm,  or the Frobenius norm, or   
  the  infinity norm,  or the  element of  largest absolute value  of a   
  real symmetric matrix A.   

  Description   
  ===========   

  DLANSY returns the value   

  DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'   
           (   
           ( norm1(A),         NORM = '1', 'O' or 'o'   
           (   
           ( normI(A),         NORM = 'I' or 'i'   
           (   
           ( normF(A),         NORM = 'F', 'f', 'E' or 'e'   

  where  norm1  denotes the  one norm of a matrix (maximum column sum),   
  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and   
  normF  denotes the  Frobenius norm of a matrix (square root of sum of   
  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.   

  Arguments   
  =========   

  NORM    (input) CHARACTER*1   
       Specifies the value to be returned in DLANSY as described   
       above.   

  UPLO    (input) CHARACTER*1   
       Specifies whether the upper or lower triangular part of the   
       symmetric matrix A is to be referenced.   
       = 'U':  Upper triangular part of A is referenced   
       = 'L':  Lower triangular part of A is referenced   

  N       (input) INTEGER   
       The order of the matrix A.  N >= 0.  When N = 0, DLANSY is   
       set to zero.   

  A       (input) DOUBLE PRECISION array, dimension (LDA,N)   
       The symmetric matrix A.  If UPLO = 'U', the leading n by n   
       upper triangular part of A contains the upper triangular part   
       of the matrix A, and the strictly lower triangular part of A   
       is not referenced.  If UPLO = 'L', the leading n by n lower   
       triangular part of A contains the lower triangular part of   
       the matrix A, and the strictly upper triangular part of A is   
       not referenced.   

  LDA     (input) INTEGER   
       The leading dimension of the array A.  LDA >= max(N,1).   

  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK),   
       where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,   
       WORK is not referenced.   

  =====================================================================   
  */
  /**
   * サブルーチン
   * 
   * @param norm norm
   * @param uplo uplo
   * @param n n
   * @param ain ain
   * @param lda lda
   * @param workin workin
   * @return result
   */
  RS execute(String norm, String uplo, int n, RS[] ain, int lda, RS[] workin) {
    final RS unit = ain[0].create(1);

    this.a = ain;

    RS[] work = workin;

    int a_dim1 = lda;
    int a_offset = 1 + a_dim1 * 1;

    int pointer_a = -a_offset;
    int pointer_work = -1;

    RS value = null;
    if (n == 0) {
      value = unit.createZero();
    } else if (BLAS.lsame(norm, "M")) { //$NON-NLS-1$
      /* Find max(abs(A(i,j))). */
      value = unit.create(0);
      if (BLAS.lsame(uplo, "U")) { //$NON-NLS-1$
        for (int j = 1; j <= n; ++j) {
          for (int i = 1; i <= j; ++i) {
            RS d1 = this.a[(j) * a_dim1 + i + pointer_a];
            value = value.max(d1.abs());
          }
        }
      } else {
        for (int j = 1; j <= n; ++j) {
          for (int i = j; i <= n; ++i) {
            RS d1 = this.a[(j) * a_dim1 + i + pointer_a];
            value = value.max(d1.abs());
          }
        }
      }
    } else if (BLAS.lsame(norm, "I") || BLAS.lsame(norm, "O") || norm.charAt(0) == '1') { //$NON-NLS-1$ //$NON-NLS-2$
      /* Find normI(A) ( = norm1(A), since A is symmetric). */
      value = unit.create(0);
      if (BLAS.lsame(uplo, "U")) { //$NON-NLS-1$
        for (int j = 1; j <= n; ++j) {
          this.sum = unit.create(0);
          for (int i = 1; i <= j - 1; ++i) {
            RS d1 = this.a[(j) * a_dim1 + i + pointer_a];
            RS absa = d1.abs();
            this.sum = this.sum.add(absa);
            work[i + pointer_work] = work[i + pointer_work].add(absa);
          }
          RS d1 = this.a[(j) * a_dim1 + j + pointer_a];
          work[j + pointer_work] = this.sum.add(d1.abs());
        }
        for (int i = 1; i <= n; ++i) {
          RS d2 = work[i + pointer_work];
          value = value.max(d2);
        }
      } else {
        for (int i = 1; i <= n; ++i) {
          work[i + pointer_work] = unit.create(0);
        }
        for (int j = 1; j <= n; ++j) {
          RS d1 = this.a[(j) * a_dim1 + j + pointer_a];
          this.sum = work[j + pointer_work].add(d1.abs());
          for (int i = j + 1; i <= n; ++i) {
            d1 = this.a[(j) * a_dim1 + i + pointer_a];
            RS absa = d1.abs();
            this.sum = this.sum.add(absa);
            work[i + pointer_work] = work[i + pointer_work].add(absa);
          }
          value = value.max(this.sum);
        }
      }
    } else if (BLAS.lsame(norm, "F") || BLAS.lsame(norm, "E")) { //$NON-NLS-1$ //$NON-NLS-2$
      /* Find normF(A). */
      this.scale = unit.create(0);
      this.sum = unit.create(1);
      if (BLAS.lsame(uplo, "U")) { //$NON-NLS-1$
        for (int j = 2; j <= n; ++j) {
          dlassq(j - 1, (j) * a_dim1 + 1 + pointer_a, 1);
        }
      } else {
        for (int j = 1; j <= n - 1; ++j) {
          dlassq(n - j, (j) * a_dim1 + j + 1 + pointer_a, 1);
        }
      }
      this.sum = this.sum.multiply(2);
      dlassq(n, a_offset + pointer_a, lda + 1);
      value = this.scale.multiply(this.sum.sqrt());
    }

    RS ret_val = value;
    return ret_val;
  }

  /*  -- LAPACK auxiliary routine (version 3.0) --   
  Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
  Courant Institute, Argonne National Lab, and Rice University   
  June 30, 1999   


  Purpose   
  =======   

  DLASSQ  returns the values  scl  and  smsq  such that   

  ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,   

  where  x( i ) = X( 1 + ( i - 1 )*INCX ). The value of  sumsq  is   
  assumed to be non-negative and  scl  returns the value   

  scl = max( scale, abs( x( i ) ) ).   

  scale and sumsq must be supplied in SCALE and SUMSQ and   
  scl and smsq are overwritten on SCALE and SUMSQ respectively.   

  The routine makes only one pass through the vector x.   

  Arguments   
  =========   

  N       (input) INTEGER   
       The number of elements to be used from the vector X.   

  X       (input) DOUBLE PRECISION array, dimension (N)   
       The vector for which a scaled sum of squares is computed.   
          x( i )  = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.   

  INCX    (input) INTEGER   
       The increment between successive values of the vector X.   
       INCX > 0.   

  SCALE   (input/output) DOUBLE PRECISION   
       On entry, the value  scale  in the equation above.   
       On exit, SCALE is overwritten with  scl , the scaling factor   
       for the sum of squares.   

  SUMSQ   (input/output) DOUBLE PRECISION   
       On entry, the value  sumsq  in the equation above.   
       On exit, SUMSQ is overwritten with  smsq , the basic sum of   
       squares from which  scl  has been factored out.   

  =====================================================================   
  */
  /**
   * @param n n
   * @param xIndex xIndex
   * @param incx incx
   * @return result
   */
  private int dlassq(int n, int xIndex, int incx) {
    RS[] x = this.a;

    int pointer_x = xIndex;
    --pointer_x;

    if (n > 0) {
      int i1 = (n - 1) * incx + 1;
      int i2 = incx;
      for (int ix = 1; i2 < 0 ? ix >= i1 : ix <= i1; ix += i2) {
        if (!x[ix + pointer_x].isZero()) {
          RS d = x[ix + pointer_x];
          RS absxi = d.abs();
          if (this.scale.isLessThan(absxi)) {
            d = this.scale.divide(absxi);
            this.sum = this.sum.multiply((d.multiply(d))).add(1);
            this.scale = absxi;
          } else {
            d = absxi.divide(this.scale);
            this.sum = this.sum.add(d.multiply(d));
          }
        }
        /* L10: */
      }
    }
    return 0;
  }
}