Dlassq.java
package org.mklab.sdpj.gpack.lapackwrap;
import org.mklab.nfc.matrix.ComplexNumericalMatrix;
import org.mklab.nfc.matrix.RealNumericalMatrix;
import org.mklab.nfc.scalar.ComplexNumericalScalar;
import org.mklab.nfc.scalar.RealNumericalScalar;
/**
* @author koga
* @version $Revision$, 2009/04/25
* @param <RS> type of real scalar
* @param <RM> type of real matrix
* @param <CS> type of complex scalar
* @param <CM> type of complex Matrix
*/
public class Dlassq<RS extends RealNumericalScalar<RS, RM, CS, CM>, RM extends RealNumericalMatrix<RS, RM, CS, CM>, CS extends ComplexNumericalScalar<RS, RM, CS, CM>, CM extends ComplexNumericalMatrix<RS, RM, CS, CM>> {
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Purpose
=======
DLASSQ returns the values scl and smsq such that
( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
assumed to be non-negative and scl returns the value
scl = max( scale, abs( x( i ) ) ).
scale and sumsq must be supplied in SCALE and SUMSQ and
scl and smsq are overwritten on SCALE and SUMSQ respectively.
The routine makes only one pass through the vector x.
Arguments
=========
N (input) INTEGER
The number of elements to be used from the vector X.
X (input) DOUBLE PRECISION array, dimension (N)
The vector for which a scaled sum of squares is computed.
x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
INCX (input) INTEGER
The increment between successive values of the vector X.
INCX > 0.
SCALE (input/output) DOUBLE PRECISION
On entry, the value scale in the equation above.
On exit, SCALE is overwritten with scl , the scaling factor
for the sum of squares.
SUMSQ (input/output) DOUBLE PRECISION
On entry, the value sumsq in the equation above.
On exit, SUMSQ is overwritten with smsq , the basic sum of
squares from which scl has been factored out.
=====================================================================
*/
/**
* @param n n
* @param x x
* @param incx incx
* @param scale scale
* @param sumsq sumsq
* @return result
*/
RS[] execute(int n, RS[] x, int incx, RS scale, RS sumsq) {
RS scaleTemp = scale;
RS sumsqTemp = sumsq;
int pointer_x = -1;
if (n > 0) {
int i1 = (n - 1) * incx + 1;
int i2 = incx;
for (int ix = 1; i2 < 0 ? ix >= i1 : ix <= i1; ix += i2) {
if (!x[pointer_x + ix].isZero()) {
RS d1 = x[pointer_x + ix];
RS absxi = d1.abs();
if (scaleTemp.isLessThan(absxi)) {
RS d2 = scaleTemp.divide(absxi);
sumsqTemp = (sumsqTemp.multiply(d2.multiply(d2))).add(1);
scaleTemp = absxi;
} else {
RS d2 = absxi.divide(scaleTemp);
sumsqTemp = sumsqTemp.add(d2.multiply(d2));
}
}
}
}
RS[] ans = scale.createArray(2);
ans[0] = scaleTemp;
ans[1] = sumsqTemp;
return ans;
}
}