Ilaenv.java
package org.mklab.sdpj.gpack.lapackwrap;
import org.mklab.nfc.matrix.ComplexNumericalMatrix;
import org.mklab.nfc.matrix.RealNumericalMatrix;
import org.mklab.nfc.scalar.ComplexNumericalScalar;
import org.mklab.nfc.scalar.RealNumericalScalar;
import org.mklab.sdpj.gpack.f2clibs.LibF77;
/**
* @author koga
* @version $Revision$, 2009/04/25
* @param <RS> type of real scalar
* @param <RM> type of real matrix
* @param <CS> type of complex scalar
* @param <CM> type of complex Matrix
*/
public class Ilaenv<RS extends RealNumericalScalar<RS, RM, CS, CM>, RM extends RealNumericalMatrix<RS, RM, CS, CM>, CS extends ComplexNumericalScalar<RS, RM, CS, CM>, CM extends ComplexNumericalMatrix<RS, RM, CS, CM>> {
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Purpose
=======
ILAENV is called from the LAPACK routines to choose problem-dependent
parameters for the local environment. See ISPEC for a description of
the parameters.
This version provides a set of parameters which should give good,
but not optimal, performance on many of the currently available
computers. Users are encouraged to modify this subroutine to set
the tuning parameters for their particular machine using the option
and problem size information in the arguments.
This routine will not function correctly if it is converted to all
lower case. Converting it to all upper case is allowed.
Arguments
=========
ISPEC (input) INTEGER
Specifies the parameter to be returned as the value of
ILAENV.
= 1: the optimal blocksize; if this value is 1, an unblocked
algorithm will give the best performance.
= 2: the minimum block size for which the block routine
should be used; if the usable block size is less than
this value, an unblocked routine should be used.
= 3: the crossover point (in a block routine, for N less
than this value, an unblocked routine should be used)
= 4: the number of shifts, used in the nonsymmetric
eigenvalue routines
= 5: the minimum column dimension for blocking to be used;
rectangular blocks must have dimension at least k by m,
where k is given by ILAENV(2,...) and m by ILAENV(5,...)
= 6: the crossover point for the SVD (when reducing an m by n
matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds
this value, a QR factorization is used first to reduce
the matrix to a triangular form.)
= 7: the number of processors
= 8: the crossover point for the multishift QR and QZ methods
for nonsymmetric eigenvalue problems.
= 9: maximum size of the subproblems at the bottom of the
computation tree in the divide-and-conquer algorithm
(used by xGELSD and xGESDD)
=10: ieee NaN arithmetic can be trusted not to trap
=11: infinity arithmetic can be trusted not to trap
NAME (input) CHARACTER*(*)
The name of the calling subroutine, in either upper case or
lower case.
OPTS (input) CHARACTER*(*)
The character options to the subroutine NAME, concatenated
into a single character string. For example, UPLO = 'U',
TRANS = 'T', and DIAG = 'N' for a triangular routine would
be specified as OPTS = 'UTN'.
N1 (input) INTEGER
N2 (input) INTEGER
N3 (input) INTEGER
N4 (input) INTEGER
Problem dimensions for the subroutine NAME; these may not all
be required.
(ILAENV) (output) INTEGER
>= 0: the value of the parameter specified by ISPEC
< 0: if ILAENV = -k, the k-th argument had an illegal value.
Further Details
===============
The following conventions have been used when calling ILAENV from the
LAPACK routines:
1) OPTS is a concatenation of all of the character options to
subroutine NAME, in the same order that they appear in the
argument list for NAME, even if they are not used in determining
the value of the parameter specified by ISPEC.
2) The problem dimensions N1, N2, N3, N4 are specified in the order
that they appear in the argument list for NAME. N1 is used
first, N2 second, and so on, and unused problem dimensions are
passed a value of -1.
3) The parameter value returned by ILAENV is checked for validity in
the calling subroutine. For example, ILAENV is used to retrieve
the optimal blocksize for STRTRI as follows:
NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 )
IF( NB.LE.1 ) NB = MAX( 1, N )
=====================================================================
*/
/**
* @param ispec ispec
* @param name name
* @param opts opts
* @param n1 n1
* @param n2 n2
* @param n3 n3
* @param n4 n4
* @param name_len name_len
* @param opts_len opts_len
* @param unit unit
* @return result
*/
public int execute(int ispec, String name, String opts, int n1, int n2, int n3, int n4, int name_len, int opts_len, RS unit) {
RS c_b162 = unit.create(0);
RS c_b163 = unit.create(1);
int ret_val = -1;
char[] c2 = new char[2];
char[] c3 = new char[3];
char[] c4 = new char[2];
char[] subnam = new char[6];
switch (ispec) {
case 1:
break;
case 2:
break;
case 3:
break;
case 4:
// ISPEC = 4: number of shifts (used by xHSEQR)
ret_val = 6;
break;
case 5:
// ISPEC = 5: minimum column dimension (not used)
ret_val = 2;
break;
case 6:
// ISPEC = 6: crossover point for SVD (used by xGELSS and xGESVD)
ret_val = (int)(Math.min(n1, n2) * 1.6f);
break;
case 7:
// ISPEC = 7: number of processors (not used)
ret_val = 1;
break;
case 8:
// ISPEC = 8: crossover point for multishift (used by xHSEQR)
ret_val = 50;
break;
case 9:
/* ISPEC = 9: maximum size of the subproblems at the bottom of the
computation tree in the divide-and-conquer algorithm (used by xGELSD and xGESDD) */
ret_val = 25;
break;
case 10:
// ISPEC = 10: ieee NaN arithmetic can be trusted not to trap ILAENV = 0
ret_val = 1;
if (ret_val == 1) {
ret_val = ieeeck(0, c_b162, c_b163);
}
break;
case 11:
// ISPEC = 11: infinity arithmetic can be trusted not to trap ILAENV = 0
ret_val = 1;
if (ret_val == 1) {
ret_val = ieeeck(1, c_b162, c_b163);
}
break;
}
//L100:
/* Convert NAME to upper case if the first character is lower case. */
if (ispec >= 1 && ispec <= 3) {
ret_val = 1;
LibF77.copy(subnam, name, 6, name.length());
int ic = subnam[0];
int iz = 'Z';
//ASCII character set
if (iz == 90 || iz == 122) {
if (ic >= 97 && ic <= 122) {
subnam[0] = (char)(ic - 32);
for (int i = 2; i <= 6; ++i) {
ic = subnam[i - 1];
if (ic >= 97 && ic <= 122) {
subnam[i - 1] = (char)(ic - 32);
}
}
}
}
//EBCDIC character set
if (iz == 233 || iz == 169) {
if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= 162 && ic <= 169) {
subnam[0] = (char)(ic + 64);
for (int i = 2; i <= 6; ++i) {
ic = subnam[i - 1];
if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= 162 && ic <= 169) {
subnam[i - 1] = (char)(ic + 64);
}
}
}
}
//prime machines: ASCII + 128
if (iz == 218 || iz == 250) {
if (ic >= 225 && ic <= 250) {
subnam[0] = (char)(ic - 32);
for (int i = 2; i <= 6; ++i) {
ic = subnam[i - 1];
if (ic >= 225 && ic <= 250) {
subnam[i - 1] = (char)(ic - 32);
}
}
}
}
char c1 = subnam[0];
boolean sname = (c1 == 'S' || c1 == 'D');
boolean cname = (c1 == 'C' || c1 == 'Z');
if (!(cname || sname)) {
return ret_val;
}
char[] subnam1 = new char[6 - 1];
char[] subnam3 = new char[6 - 3];
char[] c3_1 = new char[3 - 1];
System.arraycopy(subnam, 1, subnam1, 0, 5);
System.arraycopy(subnam, 3, subnam3, 0, 3);
LibF77.copy(c2, String.copyValueOf(subnam1), 2, 2);
LibF77.copy(c3, String.copyValueOf(subnam3), 3, 3);
System.arraycopy(c3, 1, c3_1, 0, 2);
LibF77.copy(c4, String.copyValueOf(c3_1), 2, 2);
switch (ispec) {
case 1:
return this.L110(sname, cname, n2, n4, c2, c3, c4);
case 2:
return this.L200(sname, cname, c2, c3, c4);
case 3:
return this.L300(sname, cname, c2, c3, c4);
}
// Invalid value for ISPEC
}
return ret_val;
}
/**
* @param c c
* @param c_b162 c_b162
* @param c_b163 c_163
* @return result
*/
private int ieeeck(int c, RS c_b162, RS c_b163) {
return new IEEEck<RS,RM,CS,CM>().execute(c, c_b162, c_b163);
}
//------
/* ISPEC = 1: block size
In these examples, separate code is provided for setting NB for
real and complex. We assume that NB will take the same value in
single or double precision. */
/**
* @param sname sname
* @param cname cname
* @param n2 n2
* @param n4 n4
* @param c2 c2
* @param c3 c3
* @param c4 c4
* @return result
*/
private int L110(boolean sname, boolean cname, int n2, int n4, char[] c2, char[] c3, char[] c4) {
int nb = 1;
if (LibF77.compare(c2, "GE", 2, 2) == 0) { //$NON-NLS-1$
if (LibF77.compare(c3, "TRF", 3, 3) == 0) { //$NON-NLS-1$
if (sname) {
nb = 64;
} else {
nb = 64;
}
} else if (LibF77.compare(c3, "QRF", 3, 3) == 0 || LibF77.compare(c3, "RQF", 3, 3) == 0 || LibF77.compare(c3, "LQF", 3, 3) == 0 || LibF77.compare(c3, "QLF", 3, 3) == 0) { //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$ //$NON-NLS-4$
if (sname) {
nb = 32;
} else {
nb = 32;
}
} else if (LibF77.compare(c3, "HRD", 3, 3) == 0) { //$NON-NLS-1$
if (sname) {
nb = 32;
} else {
nb = 32;
}
} else if (LibF77.compare(c3, "BRD", 3, 3) == 0) { //$NON-NLS-1$
if (sname) {
nb = 32;
} else {
nb = 32;
}
} else if (LibF77.compare(c3, "TRI", 3, 3) == 0) { //$NON-NLS-1$
if (sname) {
nb = 64;
} else {
nb = 64;
}
}
} else if (LibF77.compare(c2, "PO", 2, 2) == 0) { //$NON-NLS-1$
if (LibF77.compare(c3, "TRF", 3, 3) == 0) { //$NON-NLS-1$
if (sname) {
nb = 64;
} else {
nb = 64;
}
}
} else if (LibF77.compare(c2, "SY", 2, 2) == 0) { //$NON-NLS-1$
if (LibF77.compare(c3, "TRF", 3, 3) == 0) { //$NON-NLS-1$
if (sname) {
nb = 64;
} else {
nb = 64;
}
} else if (sname && LibF77.compare(c3, "TRD", 3, 3) == 0) { //$NON-NLS-1$
nb = 32;
} else if (sname && LibF77.compare(c3, "GST", 3, 3) == 0) { //$NON-NLS-1$
nb = 64;
}
} else if (cname && LibF77.compare(c2, "HE", 2, 2) == 0) { //$NON-NLS-1$
if (LibF77.compare(c3, "TRF", 3, 3) == 0) { //$NON-NLS-1$
nb = 64;
} else if (LibF77.compare(c3, "TRD", 3, 3) == 0) { //$NON-NLS-1$
nb = 32;
} else if (LibF77.compare(c3, "GST", 3, 3) == 0) { //$NON-NLS-1$
nb = 64;
}
} else if (sname && LibF77.compare(c2, "OR", 2, 2) == 0) { //$NON-NLS-1$
if (c3[0] == 'G') {
if (LibF77.compare(c4, "QR", 2, 2) == 0 || LibF77.compare(c4, "RQ", 2, 2) == 0 || LibF77.compare(c4, "LQ", 2, 2) == 0 || LibF77.compare(c4, "QL", 2, 2) == 0 || LibF77.compare(c4, "HR", 2, 2) == 0 || LibF77.compare(c4, "TR", 2, 2) == 0 //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$ //$NON-NLS-4$ //$NON-NLS-5$ //$NON-NLS-6$
|| LibF77.compare(c4, "BR", 2, 2) == 0) { //$NON-NLS-1$
nb = 32;
}
} else if (c3[0] == 'M') {
if (LibF77.compare(c4, "QR", 2, 2) == 0 || LibF77.compare(c4, "RQ", 2, 2) == 0 || LibF77.compare(c4, "LQ", 2, 2) == 0 || LibF77.compare(c4, "QL", 2, 2) == 0 || LibF77.compare(c4, "HR", 2, 2) == 0 || LibF77.compare(c4, "TR", 2, 2) == 0 //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$ //$NON-NLS-4$ //$NON-NLS-5$ //$NON-NLS-6$
|| LibF77.compare(c4, "BR", 2, 2) == 0) { //$NON-NLS-1$
nb = 32;
}
}
} else if (cname && LibF77.compare(c2, "UN", 2, 2) == 0) { //$NON-NLS-1$
if (c3[0] == 'G') {
if (LibF77.compare(c4, "QR", 2, 2) == 0 || LibF77.compare(c4, "RQ", 2, 2) == 0 || LibF77.compare(c4, "LQ", 2, 2) == 0 || LibF77.compare(c4, "QL", 2, 2) == 0 || LibF77.compare(c4, "HR", 2, 2) == 0 || LibF77.compare(c4, "TR", 2, 2) == 0 //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$ //$NON-NLS-4$ //$NON-NLS-5$ //$NON-NLS-6$
|| LibF77.compare(c4, "BR", 2, 2) == 0) { //$NON-NLS-1$
nb = 32;
}
} else if (c3[0] == 'M') {
if (LibF77.compare(c4, "QR", 2, 2) == 0 || LibF77.compare(c4, "RQ", 2, 2) == 0 || LibF77.compare(c4, "LQ", 2, 2) == 0 || LibF77.compare(c4, "QL", 2, 2) == 0 || LibF77.compare(c4, "HR", 2, 2) == 0 || LibF77.compare(c4, "TR", 2, 2) == 0 //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$ //$NON-NLS-4$ //$NON-NLS-5$ //$NON-NLS-6$
|| LibF77.compare(c4, "BR", 2, 2) == 0) { //$NON-NLS-1$
nb = 32;
}
}
} else if (LibF77.compare(c2, "GB", 2, 2) == 0) { //$NON-NLS-1$
if (LibF77.compare(c3, "TRF", 3, 3) == 0) { //$NON-NLS-1$
if (sname) {
if (n4 <= 64) {
nb = 1;
} else {
nb = 32;
}
} else {
if (n4 <= 64) {
nb = 1;
} else {
nb = 32;
}
}
}
} else if (LibF77.compare(c2, "PB", 2, 2) == 0) { //$NON-NLS-1$
if (LibF77.compare(c3, "TRF", 3, 3) == 0) { //$NON-NLS-1$
if (sname) {
if (n2 <= 64) {
nb = 1;
} else {
nb = 32;
}
} else {
if (n2 <= 64) {
nb = 1;
} else {
nb = 32;
}
}
}
} else if (LibF77.compare(c2, "TR", 2, 2) == 0) { //$NON-NLS-1$
if (LibF77.compare(c3, "TRI", 3, 3) == 0) { //$NON-NLS-1$
if (sname) {
nb = 64;
} else {
nb = 64;
}
}
} else if (LibF77.compare(c2, "LA", 2, 2) == 0) { //$NON-NLS-1$
if (LibF77.compare(c3, "UUM", 3, 3) == 0) { //$NON-NLS-1$
if (sname) {
nb = 64;
} else {
nb = 64;
}
}
} else if (sname && LibF77.compare(c2, "ST", 2, 2) == 0) { //$NON-NLS-1$
if (LibF77.compare(c3, "EBZ", 3, 3) == 0) { //$NON-NLS-1$
nb = 1;
}
}
return nb;
}
/**
* @param sname sname
* @param cname cname
* @param c2 c2
* @param c3 c3
* @param c4 c4
* @return result
*/
private int L200(boolean sname, boolean cname, char[] c2, char[] c3, char[] c4) {
/* ISPEC = 2: minimum block size */
int nbmin = 2;
if (LibF77.compare(c2, "GE", 2, 2) == 0) { //$NON-NLS-1$
if (LibF77.compare(c3, "QRF", 3, 3) == 0 || LibF77.compare(c3, "RQF", 3, 3) == 0 || LibF77.compare(c3, "LQF", 3, 3) == 0 || LibF77.compare(c3, "QLF", 3, 3) == 0) { //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$ //$NON-NLS-4$
if (sname) {
nbmin = 2;
} else {
nbmin = 2;
}
} else if (LibF77.compare(c3, "HRD", 3, 3) == 0) { //$NON-NLS-1$
if (sname) {
nbmin = 2;
} else {
nbmin = 2;
}
} else if (LibF77.compare(c3, "BRD", 3, 3) == 0) { //$NON-NLS-1$
if (sname) {
nbmin = 2;
} else {
nbmin = 2;
}
} else if (LibF77.compare(c3, "TRI", 3, 3) == 0) { //$NON-NLS-1$
if (sname) {
nbmin = 2;
} else {
nbmin = 2;
}
}
} else if (LibF77.compare(c2, "SY", 2, 2) == 0) { //$NON-NLS-1$
if (LibF77.compare(c3, "TRF", 3, 3) == 0) { //$NON-NLS-1$
if (sname) {
nbmin = 8;
} else {
nbmin = 8;
}
} else if (sname && LibF77.compare(c3, "TRD", 3, 3) == 0) { //$NON-NLS-1$
nbmin = 2;
}
} else if (cname && LibF77.compare(c2, "HE", 2, 2) == 0) { //$NON-NLS-1$
if (LibF77.compare(c3, "TRD", 3, 3) == 0) { //$NON-NLS-1$
nbmin = 2;
}
} else if (sname && LibF77.compare(c2, "OR", 2, 2) == 0) { //$NON-NLS-1$
if (c3[0] == 'G') {
if (LibF77.compare(c4, "QR", 2, 2) == 0 || LibF77.compare(c4, "RQ", 2, 2) == 0 || LibF77.compare(c4, "LQ", 2, 2) == 0 || LibF77.compare(c4, "QL", 2, 2) == 0 || LibF77.compare(c4, "HR", 2, 2) == 0 || LibF77.compare(c4, "TR", 2, 2) == 0 //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$ //$NON-NLS-4$ //$NON-NLS-5$ //$NON-NLS-6$
|| LibF77.compare(c4, "BR", 2, 2) == 0) { //$NON-NLS-1$
nbmin = 2;
}
} else if (c3[0] == 'M') {
if (LibF77.compare(c4, "QR", 2, 2) == 0 || LibF77.compare(c4, "RQ", 2, 2) == 0 || LibF77.compare(c4, "LQ", 2, 2) == 0 || LibF77.compare(c4, "QL", 2, 2) == 0 || LibF77.compare(c4, "HR", 2, 2) == 0 || LibF77.compare(c4, "TR", 2, 2) == 0 //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$ //$NON-NLS-4$ //$NON-NLS-5$ //$NON-NLS-6$
|| LibF77.compare(c4, "BR", 2, 2) == 0) { //$NON-NLS-1$
nbmin = 2;
}
}
} else if (cname && LibF77.compare(c2, "UN", 2, 2) == 0) { //$NON-NLS-1$
if (c3[0] == 'G') {
if (LibF77.compare(c4, "QR", 2, 2) == 0 || LibF77.compare(c4, "RQ", 2, 2) == 0 || LibF77.compare(c4, "LQ", 2, 2) == 0 || LibF77.compare(c4, "QL", 2, 2) == 0 || LibF77.compare(c4, "HR", 2, 2) == 0 || LibF77.compare(c4, "TR", 2, 2) == 0 //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$ //$NON-NLS-4$ //$NON-NLS-5$ //$NON-NLS-6$
|| LibF77.compare(c4, "BR", 2, 2) == 0) { //$NON-NLS-1$
nbmin = 2;
}
} else if (c3[0] == 'M') {
if (LibF77.compare(c4, "QR", 2, 2) == 0 || LibF77.compare(c4, "RQ", 2, 2) == 0 || LibF77.compare(c4, "LQ", 2, 2) == 0 || LibF77.compare(c4, "QL", 2, 2) == 0 || LibF77.compare(c4, "HR", 2, 2) == 0 || LibF77.compare(c4, "TR", 2, 2) == 0 //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$ //$NON-NLS-4$ //$NON-NLS-5$ //$NON-NLS-6$
|| LibF77.compare(c4, "BR", 2, 2) == 0) { //$NON-NLS-1$
nbmin = 2;
}
}
}
return nbmin;
}
/**
* @param sname sname
* @param cname cname
* @param c2 c2
* @param c3 c3
* @param c4 c4
* @return result
*/
private int L300(boolean sname, boolean cname, char[] c2, char[] c3, char[] c4) {
/* ISPEC = 3: crossover point */
int nx = 0;
if (LibF77.compare(c2, "GE", 2, 2) == 0) { //$NON-NLS-1$
if (LibF77.compare(c3, "QRF", 3, 3) == 0 || LibF77.compare(c3, "RQF", 3, 3) == 0 || LibF77.compare(c3, "LQF", 3, 3) == 0 || LibF77.compare(c3, "QLF", 3, 3) == 0) { //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$ //$NON-NLS-4$
if (sname) {
nx = 128;
} else {
nx = 128;
}
} else if (LibF77.compare(c3, "HRD", 3, 3) == 0) { //$NON-NLS-1$
if (sname) {
nx = 128;
} else {
nx = 128;
}
} else if (LibF77.compare(c3, "BRD", 3, 3) == 0) { //$NON-NLS-1$
if (sname) {
nx = 128;
} else {
nx = 128;
}
}
} else if (LibF77.compare(c2, "SY", 2, 2) == 0) { //$NON-NLS-1$
if (sname && LibF77.compare(c3, "TRD", 3, 3) == 0) { //$NON-NLS-1$
nx = 32;
}
} else if (cname && LibF77.compare(c2, "HE", 2, 2) == 0) { //$NON-NLS-1$
if (LibF77.compare(c3, "TRD", 3, 3) == 0) { //$NON-NLS-1$
nx = 32;
}
} else if (sname && LibF77.compare(c2, "OR", 2, 2) == 0) { //$NON-NLS-1$
if (c3[0] == 'G') {
if (LibF77.compare(c4, "QR", 2, 2) == 0 || LibF77.compare(c4, "RQ", 2, 2) == 0 || LibF77.compare(c4, "LQ", 2, 2) == 0 || LibF77.compare(c4, "QL", 2, 2) == 0 || LibF77.compare(c4, "HR", 2, 2) == 0 || LibF77.compare(c4, "TR", 2, 2) == 0 //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$ //$NON-NLS-4$ //$NON-NLS-5$ //$NON-NLS-6$
|| LibF77.compare(c4, "BR", 2, 2) == 0) { //$NON-NLS-1$
nx = 128;
}
}
} else if (cname && LibF77.compare(c2, "UN", 2, 2) == 0) { //$NON-NLS-1$
if (c3[0] == 'G') {
if (LibF77.compare(c4, "QR", 2, 2) == 0 || LibF77.compare(c4, "RQ", 2, 2) == 0 || LibF77.compare(c4, "LQ", 2, 2) == 0 || LibF77.compare(c4, "QL", 2, 2) == 0 || LibF77.compare(c4, "HR", 2, 2) == 0 || LibF77.compare(c4, "TR", 2, 2) == 0 //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$ //$NON-NLS-4$ //$NON-NLS-5$ //$NON-NLS-6$
|| LibF77.compare(c4, "BR", 2, 2) == 0) { //$NON-NLS-1$
nx = 128;
}
}
}
return nx;
}
}